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Abstract

The e�ect of the choice of the reference ¯uid temperature on the solutions of fully-developed mixed-convection
problems in a plane vertical channel is studied. First, the boundary conditions of either uniform wall temperatures

or a uniform temperature at a wall and a uniform heat ¯ux on the opposite wall are considered. It is shown that, in
these cases, the choice of the reference temperature a�ects both the velocity pro®les and the axial change of the
di�erence between the pressure and the hydrostatic pressure. A general method to choose the reference ¯uid
temperature for the fully developed mixed convection in ducts is proposed. Finally, an analytical solution for the

boundary condition of uniform wall heat ¯uxes is obtained by choosing the mean ¯uid temperature in each cross
section as the local reference temperature. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several studies on mixed-convection problems for a

Newtonian ¯uid in a vertical channel have already

been presented in the literature. In particular, some

analytical solutions for the fully-developed ¯ow have

been performed. The boundary condition of uniform

but di�erent wall temperatures has been analysed by

Aung and Worku [1]. The boundary conditions of uni-

form wall temperatures, of a uniform temperature on a

wall and a uniform wall heat ¯ux on the opposite wall,

of uniform wall heat ¯uxes, have been studied by

Hamadah and Wirtz [2] and by Cheng et al. [3]. The

e�ect of viscous dissipation on the velocity and on the

temperature pro®les has been analysed by Barletta [4]

for the boundary condition of uniform wall tempera-

tures and by Zanchini [5] for boundary conditions of

the third kind.

In this paper, the basic problems solved in Refs. [1±

3] are reconsidered because, even if the mathematics

developed in these papers is correct, the physical

understanding of the problem cannot yet be considered

as satisfactory. Moreover, the case of uniform wall

heat ¯uxes with opposite signs has not yet been ana-

lysed. The defects in the physical interpretation are

caused by the following circumstance. In Refs. [1±3],

as well as in other theoretical papers on mixed convec-

tion, the reference temperature T0, employed in the lin-

ear expression of the ¯uid density r as a function of

temperature, is left undetermined. On the other hand,
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an analysis of Refs. [1±3] suggests that the choice of
T0 may be important.
For instance, let us consider the boundary condition

of uniform wall temperatures, hereafter denoted by T1

t T2. For this boundary condition, pro®les of the
dimensionless axial velocity u=U/Um, where U is the

axial ¯uid velocity and Um is the mean value of U in

any cross section of the channel, are plotted in Refs.
[1±3]. The plots represent u as a function of the dimen-
sionless transverse coordinate and of two dimensionless

parameters, each of which depends on T0. Thus, it is
natural to wonder whether the values of u obtained
depend on the choice of the reference temperature T0.

In this paper, it will be proved that, even if slightly,

Nomenclature

ai dimensionless coe�cients, which appear in Eq. (61), i=1, 2, 3, 4
A, B dimensionless integration constants, de®ned by Eq. (20)
cp speci®c heat at constant pressure [J kgÿ1 Kÿ1]
F function of T0, de®ned by Eq. (34) [K2 m]
g acceleration due to gravity [m sÿ2]
Gr Grashof number, de®ned in Eqs. (10) and (36)

k thermal conductivity [W mÿ1 Kÿ1]
L half the channel width [m]
Nu1, Nu2 Nusselt numbers at the channel walls, de®ned by Eq. (71)

p pressure [Pa]
P =p+r0gX, di�erence between the pressure and the hydrostatic pressure [Pa]
q1, q2 wall heat ¯uxes per unit area [W mÿ2]
R =q1/q2, dimensionless parameter

Re Reynolds number, de®ned in Eq. (10)
T temperature [K]
Tb bulk temperature, de®ned by Eq. (72) [K]

Tm mean ¯uid temperature, de®ned by Eqs. (8) and (38) [K]
T0 reference ¯uid temperature [K]
T1, T2 wall temperatures [K]

u =U/Um, dimensionless X-component of the velocity
U X-component of the velocity [m sÿ1]
Um mean value of U, de®ned by Eq. (9) [m sÿ1]
U velocity [m sÿ1]
v dimensionless X-component of the velocity, de®ned by Eq. (25)
X axial coordinate [m]
y =Y/L, dimensionless transverse coordinate

Y transverse coordinate [m]

Greek symbols
b thermal expansion coe�cient [Kÿ1]
g dimensionless parameter, de®ned in Eqs. (10) and (36)
e dimensionless parameter, de®ned in Eq. (10)
Z auxiliary dimensionless variable, which appears in Eq. (59)
y dimensionless temperature, de®ned in Eqs. (10) and (36)

yb dimensionless bulk temperature, de®ned by Eq. (74)
l dimensionless parameter, de®ned in Eq. (10)
~l dimensionless parameter, de®ned by Eq. (30)

L dimensionless parameter, de®ned by Eq. (24)
m dynamic viscosity [Pa s]
r ¯uid density [kg mÿ3]
rm ¯uid density at temperature Tm [kg mÿ3]
r0 reference ¯uid density [kg mÿ3]
o dimensionless parameter, de®ned by Eq. (60)
oi values of o, roots of Eq. (65), i=0, 1, 2, 3, 4
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these values depend on T0. A more crucial problem

concerns the values of the derivative dP/dX, where P
is the di�erence between the pressure p and the hydro-
static pressure, and X is the axial coordinate. No result

for this quantity is presented in Ref. [2]. According to
the expressions reported in Refs. [1,3], which agree
with each other and are con®rmed by that obtained in

this paper, the dependence of dP/dX on T0 is very
strong. As a consequence, dP/dX cannot be endowed

with a clear physical meaning, unless a proper choice
of T0 is performed.
The comments on the choice of T0 stated above

hold also for the boundary condition of a uniform
wall temperature and a uniform wall heat ¯ux, here-

after denoted by T1t q2. Indeed, as it will be shown
in Section 3, this boundary condition yields uniform
wall temperatures and thus describes the same physical

situation as the boundary condition T1t T2. For the
boundary condition of uniform wall heat ¯uxes, here-
after denoted by q1 t q2, the choice of the reference

¯uid temperature plays an even more crucial role. As it
will be shown in Section 4, in this case any choice of a

®xed reference ¯uid temperature, T0, implies a quite
unlikely pressure ®eld.
Arpaci and Larsen [6] consider T0 as an unknown

quantity, and propose the following method to deter-
mine T0 for one-dimensional parallel ¯ows. The ¯uid
motion is considered as the superposition of a forced

¯ow, in which buoyancy forces vanish, and a buoy-
ancy-driven ¯ow, in which dP/dX vanishes. The sol-

ution of the buoyancy-driven problem, with the
condition dP/dX=0, yields the value of T0. The
method can be applied only if the mass, momentum

and energy balance equations are linear. For fully-
developed channel ¯ows, this condition holds if the vis-
cous-dissipation e�ects are negligible and the boundary

condition is either T1t T2 or T1t q2. In these cases,
the method proposed in Ref. [6] yields the result

T0=(T1+T2)/2. Moreover, T0 coincides with the mean
¯uid temperature Tm, because T is independent of X
and is a linear function of the transverse coordinate.

As it will be shown in Section 4, if the boundary con-
dition is q1t q2 the method proposed by Arpaci and
Larsen [6] cannot be applied, because the energy bal-

ance equation is not linear. A method to perform a
suitable choice of the reference ¯uid temperature, for

any fully developed channel ¯ow, is proposed in this
paper. For the boundary condition T1t T2 (or T1t
q2) and negligible viscous-dissipation e�ects, this

method agrees with that proposed in Ref. [6].
The paper is organized as follows. In Section 2, the

boundary condition T1 t q2 is considered and the
e�ects of the choice of T0 on u and on dP/dX are ana-
lysed. In particular, it is shown that the choice of the

mean ¯uid temperature Tm as the reference tempera-
ture yields values of dP/dX which are una�ected by

the buoyancy forces. On the other hand, the choices T0

$Tm imply that, in some ¯ow conditions, P increases

along the motion. These results suggest that only the
choice T0=Tm gives to dP/dX an acceptable physical
meaning. Finally, a more general argument in favour

of the choice T0=Tm is discussed. In Section 3, it is
shown that the solution obtained, in dimensionless
form, for the boundary condition T1t q2, holds also

for the boundary condition T1t T2, with proper de®-
nitions of the dimensionless parameters. In Section 4,
the boundary condition q1t q2 is considered. First, it

is shown that a reference ¯uid temperature variable
with X must be chosen to obtain a reliable pressure
®eld, and the choice T0(X )=Tm(X ) is performed.
Then, an analytical solution of the fully-developed

mixed-convection problem in a vertical channel with
the boundary condition q1t q2 is presented. This sol-
ution holds both for positive and for negative values

of the ratio R=q1/q2, and includes the solution for the
boundary conditions T1t q2 and T1t T2 as a special
case, for R=ÿ1.

2. Mixed convection problem with the boundary

condition T1t q2: e�ect of the choice of the reference

temperature

In this section, the e�ect of the choice of the refer-
ence temperature on the solution of the fully-developed
mixed-convection problem in a vertical channel with

the boundary condition T1t q2 is analysed.
Let us consider the steady and laminar ¯ow of a

Newtonian ¯uid in a parallel-plate vertical channel.

The X-axis lies on the axial plane of the channel, with
a direction opposite to the gravitational ®eld, while the
Y-axis is orthogonal to the walls. The channel occupies
the region of space ÿLEYEL, the wall at Y=ÿL is

kept at a uniform temperature T1, while the wall at
Y=L is exposed to a uniform heat ¯ux per unit area,
q2, which will be considered as positive if the energy is

supplied to the ¯uid. The dynamic viscosity m, the ther-
mal expansion coe�cient b, the thermal conductivity k
and the thermal di�usivity of the ¯uid will be assumed

to be constant. The Boussinesq approximation will be
adopted, together with the equation of state for the
mass density

r � r0�1ÿ b�Tÿ T0�� �1�

where T0 is the reference ¯uid temperature and
r0=r(T0). Finally, it will be assumed that the only

nonzero component of the velocity ®eld U is the X-
component U. Since H � U=0, U depends only on Y.
The momentum balance equation along Y yields
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@P

@Y
� 0 �2�

where P=p+r0gX is the di�erence between the press-
ure and the hydrostatic pressure. Thus, P depends only

on X. The momentum balance equation along X yields

r0gb�Tÿ T0� ÿ dP

dX
� m

d2U

dY 2
� 0: �3�

The derivative of Eq. (3) with respect to X yields

@T

@X
� 1

r0gb
d2P

dX 2
: �4�

On account of Eq. (4), @T/@X is independent of Y.

Since @T/@X is zero for Y=ÿL, T depends only on Y.
Thus, Eq. (4) yields

dP

dX
� constant: �5�

Let us assume that only the X-component of U is non-

zero, the thermal di�usivity is a constant, viscous dissi-
pation is negligible and T depends only on Y. Then,
the energy equation reduces to

d2T

dY 2
� 0: �6�

Eq. (6) implies that T is a linear function of Y. If T(L )

is denoted by T2, one has

T2 ÿ T1 � 2Lq2
k

, T2 ÿ Tm � Tm ÿ T1 � Lq2
k

�7�

where the mean ¯uid temperature Tm, de®ned as

Tm � 1

2L

�L
ÿL

T�Y � dy �8�

coincides with the temperature on the plane Y=0. We
will call mean ¯uid density, rm, the density of the ¯uid

at temperature Tm. In analogy with Eq. (8), the mean
¯uid velocity will be given by

Um � 1

2L

�L
ÿL

U�Y � dY: �9�

Let us de®ne the following dimensionless quantities:

y � Y

L
, u � U

Um

, y � �Tÿ Tm�k
Lq2

, Re � 4LUmrm

m
,

Gr � 256r2mgbq2L
4

m2k

l � ÿ L2

mUm

dP

dX
, g � �T0 ÿ Tm�k

Lq2
,

e � b�T0 ÿ Tm�:
�10�

The de®nition of e and Eq. (1) imply

r0
rm

� 1

1� e
: �11�

Moreover, Eq. (10) yields

Gr

Re
� 64rmgbq2L

3

mkUm

: �12�

Contrary to what happens in Refs. [1±3], the Reynolds
number Re and the Grashof number Gr do not depend

on the reference temperature T0, either explicitly or
through r0. The dimensionless parameters g and e have
been introduced to analyse the dependence of u and of

l on T0.
By means of Eq. (10), one can rewrite Eq. (3) in the

dimensionless form

d2u

dy2
� ÿlÿ Gr

64�1� e� Re �yÿ g�: �13�

Eqs. (9) and (10) yield the following condition on u:

�1
ÿ1

u� y� dy � 2: �14�

From Eqs. (6) and (10) one obtains

d2y
dy2
� 0: �15�

The boundary conditions on y are

y�ÿ1� � ÿ1, dy
dy

����
y�1
� 1: �16�

Eqs. (15) and (16) yield

y� y� � y: �17�

By substituting Eq. (17) in Eq. (13) and integrating
twice, one obtains

u� y� � ÿ Gr

384�1� e�Rey
3 �

�
Gr

64�1� e�Regÿ l
�
y2

2

� Ay� B

�18�

where A and B are integration constants. The bound-

ary conditions on u,

u�ÿ1� � u�1� � 0 �19�
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yield

A � Gr

384�1� e�Re ,

B � ÿ1
2

�
Gr

64�1� e�Regÿ l
�
:

�20�

By substituting Eq. (20) in Eq. (18) and applying con-
dition (14), one obtains

l � g
1� e

Gr

64Re
� 3: �21�

Eqs. (18), (20) and (21) yield

u� y� � Gr

384�1� e�Rey�1ÿ y2� � 3

2
�1ÿ y2�: �22�

It is easily proved that Eqs. (17), (21) and (22) agree
with the results obtained in Refs. [1±3]. By writing g as
g=ek/(bLq2) and employing Eq. (12), one can rewrite

Eq. (21) in the form

l � e
1� e

L� 3 �23�

where

L � rmgL
2

mUm

�24�

which is preferable in order to study the dependence of
l on the choice of T0.
In the special case of natural convection, it is con-

venient to de®ne the modi®ed dimensionless velocity

v� y� � 384Re

Gr
u� y� � 6mk

rmgbq2L3
U�Y �: �25�

From Eqs. (22) and (25) one obtains, for Re=0,

v� y� � 1

1� e
y�1ÿ y2�: �26�

Eqs. (22) and (26) show that the dimensionless vel-
ocities u and v depend on the choice of T0 through the

parameter e. Reliable values of e can be obtained from
Eq. (10). For liquids at room temperatures, the highest
values of b are those of hydrocarbons. For n-pentane
at 208C, b=1.60 � 10ÿ3 Kÿ1 and, for vT0ÿTmv=30 K,

one has vev=0.04830.05. Thus, for liquids in the
mixed-convection conditions considered in this paper,
one can assume vev=0.05 as an upper bound for vev, if
T0 is chosen in the range T1ET0ET2. For ideal gases
at 208C, b=3.41 � 10ÿ3 Kÿ1 and, for vT0ÿTmv=30 K,
one obtains vev=0.10230.1. Thus, vev=0.1 can be con-

sidered as a reliable upper bound for vev, for the con-
ditions analysed in this paper and for reasonable
choices of T0.

Plots of u vs. y for e=0, ÿ0.1 and 0.1, are reported
in Fig. 1 for Gr/Re=2000, while plots of v vs. y for
natural convection are reported in Fig. 2, for e=0,

ÿ0.1, and 0.1. In each ®gure, the solid line refers to
e=0, the line with long dashes refers to e=ÿ0.1, the
line with short dashes refers to e=0.1. Figs. 1 and 2
show that the e�ect of the choice of T0 on the dimen-

sionless velocity pro®les determined analytically is
neither very strong nor negligible. The e�ect becomes
negligible only for low values of Gr/Re.

For mixed convection, the conditions for ¯ow rever-
sal are

du

dy

����
y�ÿ1

R0 �27�

for Gr/Re>0, and

Fig. 1. Boundary condition T1t q2: plots of u vs. y for Gr/

Re=2000. The solid line refers to e=0, the line with long

dashes to e=ÿ0.1, the line with short dashes to e=0.1.

Fig. 2. Boundary condition T1t q2: plots of v vs. y, for natu-

ral convection (Re=0). The solid line refers to e=0, the line

with long dashes to e=ÿ0.1, the line with short dashes to

e=0.1
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du

dy

����
y�1

R0 �28�

for Gr/Re<0. Eq. (22) shows that the values of Gr/Re
which ful®l conditions (27) and (28) depend on e. For
e=0, i.e. T0=Tm, Eqs. (22) and (27) yield Gr/Ree576,
while Eqs. (22) and (28) yield Gr/ReEÿ576.
Eq. (23) shows that l depends on the choice of T0

through the parameter e. We will ®rst consider positive
values of L, which correspond to positive values of Um

(upward motion). Plots of l vs. e, for L=103, 5 � 103
and 104, are reported in Fig. 3. The line with long
dashes refers to L=103, the line with short dashes
refers to L=5 � 103, while the solid line refers to

L=104. Fig. 3, which represents only a narrow range
of values of e, points out that the e�ect of the choice
of T0 on l is very strong, and increases when L
increases. For water at 208C, rm/m 3 106 s mÿ2 and

the condition L=104 is obtained, for instance, with
L=0.01 m and Um=0.1 m sÿ1. For e=0, i.e. T0=Tm,
l=3. It is easily veri®ed that this value of l equals

that obtainable for laminar forced convection in a
channel. On the other hand, Eq. (23) and Fig. 3 show
that, for every choice of T0 such that T0 $ Tm, l
becomes negative for su�ciently high values of vLv.
Note that vLv has no upper bound, because it tends to
in®nity when vUmv 4 0. Indeed, since 1+e>0, if L is
positive (upward ¯ow), negative values of l may occur

for e<0, i.e. T0<Tm. On the other hand, if L is nega-
tive (downward ¯ow), negative values of l may occur
for e>0, i.e. T0>Tm. The condition l<0 implies that

dP/dX has the same sign as Um, i.e. P increases along
the motion. This unpleasant result suggests that dP/dX
can be endowed with an acceptable physical meaning

only if the choice T0=Tm is made.
Let us now consider the quantity dp/dX, which is re-

lated to dP/dX by the equation

dp

dX
� dP

dX
ÿ r0g �29�

and the dimensionless coe�cient

~l � ÿ L2

mUm

dp

dX
: �30�

From Eqs. (29), (30), (10) and (24) one obtains

~l � l� L
1� e

: �31�

Eqs. (31) and (23) yield

~l � L� 3: �32�

Eq. (32) shows that ~l is independent of the choice of

T0. Moreover, it shows that, for ®xed values of m, rm
and L, ~l depends only on Um, with the same law as in
the case of forced convection. Thus, for a given chan-

nel and for the boundary condition considered in this
section, the buoyancy forces have no e�ect on Um, if
dp/dX, m and rm are ®xed. This result can be easily

argued from Eqs. (21) and (23) only if the choice
T0=Tm is performed, so that Eqs. (21) and (23) reduce
to l=3. Therefore, the choice T0=Tm appears as

recommendable to simplify the analysis of the relation
between the mean velocity and the pressure ®eld.
A more general argument in favour of the choice

T0=Tm is the following. As it has been shown, di�er-

ent choices of T0 yield di�erent dimensionless velocity
distributions. It is reasonable to argue that the most
accurate solution is obtained when Eq. (1) yields the

most accurate values of r(T ) in the domain ÿLEYE
L. Eq. (1) can be considered as the ®rst-order trunca-
tion of the Taylor series expansion

r�T � � r�T0� �
X1
n�1

1

n!

�
dnr
dT n

�
T�T0

�Tÿ T0�n: �33�

The best accuracy of the ®rst-order truncation of Eq.

(33) is obtained by choosing the value of T0 which
minimizes the integral of the squared di�erence
(TÿT0)

2 in the domain ÿLEYEL, i.e. the function

F�T0� �
�L
ÿL
�Tÿ T0�2 dY: �34�

The minimum of F(T0) occurs when its derivative is
zero, i.e., when T0 ful®ls the condition

�L
ÿL
�Tÿ T0� dY � 0: �35�

Fig. 3. Boundary condition T1t q2: plots of l vs. e. The line

with long dashes refers to L=103, the line with short dashes

to L=5 � 103, the solid line to L=104.
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On account of Eq. (8), Eq. (35) is ful®lled if and only
if T0=Tm.

3. Mixed convection problem with the boundary

condition T1tT2

Let us consider the boundary condition T1 t T2.
Eqs (1)±(9) still hold. On account of Eq. (7), one can
replace Lq2/k with T2ÿTm in the de®nitions of y, Gr,
and g, so that these dimensionless parameters can be
rewritten as

y � Tÿ Tm

T2 ÿ Tm

, Gr � 256r2mgb�T2 ÿ Tm�L3

m2
,

g � T0 ÿ Tm

T2 ÿ Tm

:

�36�

Thus, Eq. (12) can be written in the form

Gr

Re
� 64rmgb�T2 ÿ Tm�

mUm

: �37�

Eq. (13) still holds, with the expressions of y, g and
Gr/Re given above. Eqs. (14) and (15) remain

unchanged. On account of Eq. (7), the boundary con-
ditions on y are y(ÿ1)=ÿ1 and y(1)=1, and yield
again Eq. (17). Since the boundary conditions on u are

unchanged, one still obtains Eqs. (21)±(32).

4. Solution of the mixed convection problem for the

boundary condition q1t q2

Let us consider again the steady and fully developed
laminar ¯ow of a Newtonian ¯uid with constant values
of m, b, k and cp in the parallel-plate vertical channel

described in Section 2. Let us assume that the wall at
Y=ÿL is exposed to a uniform heat ¯ux per unit area
q1, while the wall at Y=L is exposed to a uniform

heat ¯ux per unit area q2. Each heat ¯ux will be con-
sidered as positive if the energy is supplied to the ¯uid.
Except in the particular case q1+q2=0, which reduces

to the boundary conditions studied in Sections 2 and
3, the ¯uid temperature depends on both X and Y. As
in Sections 2 and 3, it will be assumed that only the X-
component U of the velocity ®eld U is nonzero. Thus,

H � U=0 implies that U depends only on Y. Moreover,
in agreement with Refs. [2,3,7], it will be assumed that
@2T/@X 2=0.

Two di�erent kinds of choice of the reference ¯uid
temperature have been employed in the literature in
this case. In Refs. [2] and [3], a constant (and unspeci-

®ed) reference temperature T0 has been employed.
However, this kind of choice does not appear as suit-
able for the study of the fully developed region. For

instance, let us assume that q1, q2 and Um are positive.
In this case, the de®nitions of the dimensionless quan-

tities employed in Ref. [3], together with Eq. (7) of the
same reference, imply that dp/dX is a linearly increas-
ing function of X. Thus, there exists a value X0 of X

such that, for X>X0, p increases along the ¯uid-¯ow
direction. On the other hand, since the ¯ow is upward,
the pressure is expected to be a decreasing function of

X. In the study of the fully developed laminar convec-
tion for heated vertical pipes, Morton [7] chooses a
reference ¯uid temperature which varies along X,

namely the local wall temperature. We will choose as
the reference ¯uid temperature, for each cross section,
the mean ¯uid temperature in the section, i.e.

Tm�X � � 1

2L

�L
ÿL

T�X,Y � dY: �38�

As a consequence, Eq. (1) will be rewritten as

r � rm�1ÿ b�Tÿ Tm�� �39�

where rm=r(Tm). The momentum balance equation
along Y yields @P/@Y=0, so that P=P(X ). The
momentum balance equation along X yields

rmgb�Tÿ Tm� ÿ dP

dX
� m

d2U

dY 2
� 0: �40�

Clearly, since Tm depends on X, rm depends on X as
well. However, in analogy with Ref. [7], we will assume
that the derivative drm/dX is negligible. With this

assumption, the derivative of Eq. (40) with respect to
X yields

@T

@X
� dTm

dX
� 1

rmgb
d2P

dX 2
: �41�

Since Tm and P depend only on X, Eq. (41) implies
that @T/@X is independent of Y. Thus, one obtains

@T

@X
� dTm

dX
: �42�

Eqs. (41) and (42) yield d2P/dX 2=0, i.e.

dP

dX
� constant: �43�

The energy balance equation can be written as

@T

@X
U � k

rmcp

@ 2T

@Y 2
: �44�

Since Eq. (44) is non-linear, the method to determine
the reference temperature proposed in Ref. [6] is ruled
out. Eqs. (42) and (44) yield
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rmcp

dTm

dX
U � k

@ 2T

@Y 2
: �45�

An integration of Eq. (45) from ÿL to L gives

2LrmcpUm

dTm

dX
� k

@T

@Y

����
Y�L
ÿk @T

@Y

����
Y�ÿL

: �46�

The thermal boundary conditions are

ÿk@T
@Y

����
Y�ÿL
� q1, k

@T

@Y

����
Y�L
� q2: �47�

Eqs. (46) and (47) yield

dTm

dX
� q1 � q2

2LrmcpUm

: �48�

From Eqs. (45) and (48) one obtains

@ 2T

@Y 2
� q1 � q2

2Lk

U

Um

: �49�

Let us introduce the dimensionless quantities y, u, y,
Re, Gr and l de®ned in Eq. (10), and the dimensionless
parameter

R � q1
q2
: �50�

Obviously, Gr/Re is still given by Eq. (12). Moreover,
an account of Eq. (42), y depends only on y. Eq. (40)

can be rewritten as

d2u

dy2
� ÿ Gr

64Re
yÿ l �51�

while Eq. (49) yields

d2y
dy2
� 1� R

2
u: �52�

The boundary conditions on u are given by Eq. (19).
From Eq. (47) one obtains

dy
dy

����
y�ÿ1
� ÿR, dy

dy

����
y�1
� 1: �53�

Moreover, Eq. (14) holds, together with the condition

�1
ÿ1

y� y� dy � 0: �54�

Eqs. (51) and (52) yield

d4u

dy4
� ÿ Gr

128Re
�1� R�u: �55�

From Eqs. (51) and (53) one obtains

d3u

dy3

�����
y�ÿ1
� R Gr

64Re
,

d3u

dy3

�����
y�1
� ÿ Gr

64Re
: �56�

Eq. (51) can be rewritten as

y � ÿ64Re
Gr

 
d2u

dy2
� l

!
: �57�

Eqs. (54) and (57) yield

l � 1

2

 
du

dy

����
y�ÿ1
ÿdu

dy

����
y�1

!
: �58�

Let us now solve Eq. (55), together with the boundary

conditions (19) and (56) and with the constraint given
by Eq. (14). If (Gr/Re )(1+R )$0, the general solution
of Eq. (55) can be determined by solving the character-

istic equation

Z4 � o 4 �59�

where

o � 1

2

�
ÿ 1� R

8

Gr

Re

�1=4

: �60�

Since the solutions of Eq. (59) are o, ÿo, io and ÿio,
the general solution of Eq. (55) can be written in the

form

u� y� � a1 sinh �oy� � a2 cosh �oy� � a3 sin

�oy� � a4 cos �oy�:
�61�

The coe�cients a1, a2, a3 and a4 are determined by the

boundary conditions (19) and (56). By substituting the
expressions of these coe�cients in Eq. (61), one
obtains
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u� y� � �1ÿ R�o �sin o sinh �oy� ÿ sinh o sin �oy��
�1� R��sin o cosh o � cos o sinh o �

� o �cosh o cos �oy� ÿ cos o cosh �oy��
�sin o cosh o ÿ cos o sinh o � :

�62�

Clearly, the ®rst term on the right-hand-side of Eq.
(62) vanishes for R=1.

Eqs. (58) and (62) yield

l � o 2�sin o cosh o � cos o sinh o �
sin o cosh o ÿ cos o sinh o

: �63�

Then, from Eqs. (57), (60), (62) and (63) one obtains

y� y� � 1� R

2o 2

� �1ÿ R�o �sin o sinh �oy� � sinh o sin �oy��
�1� R��sin o cosh o ÿ cos o sinh o �

� sin o cosh o � cos o sinh o ÿ o �cos o cosh �oy� � cosh o cos �oy��
sin o cosh o ÿ cos o sinh o

�
: �64�

Eqs. (62), (63) and (64) hold for o$0 and R$ÿ1. The
special cases o=0 and R=ÿ1 will be considered later.

The velocity pro®les implied by Eq. (62) agree with
those obtained by Cheng et al. [3], provided that the
Grashof number is evaluated at the local mean ¯uid

temperature Tm(X ). Both for R=1 and for R$1, u( y )
and y( y ) become singular for a sequence of values of
o. For R$1, singularities occur for the real values of

o which are roots of the equation

�sin o cosh o �2 ÿ �cos o sinh o �2 � 0: �65�
The ®rst ®ve real roots of Eq. (65) are o032.36502037,

o133.92660231, o235.49780391, o337.06858274,
o438.63937982. Only the second and the fourth of the
values of o reported above correspond to singularities
of u( y ) and y( y ) for R=1. However, since the con-

dition R=1 cannot be obtained experimentally with an
in®nite accuracy, all the values of o reported above
correspond to singularities of u( y ) and y( y ) in practi-

cal cases. On account of Eq. (60), all singularities
occur for (1+R )Gr/Re<0. Thus, if q1+q2 is positive
all singularities occur for downward ¯ow, while if

q1+q2 is negative all singularities occur for upward
¯ow. In particular, o0 corresponds to (1+R )Gr/
Re=ÿ128o 4

03ÿ4004.51. In analogy with Morton [7],
we will suppose that ¯uid ¯ows with (1+R )Gr/Re <

ÿ128o 4
0 cannot be obtained experimentally.

In the special cases Gr/Re=0 and R=ÿ1, Eqs. (62)±
(64) do not hold. If Gr/Re=0, i.e., if purely forced

convection occurs, Eq. (55) reduces to

d4u

dy4
� 0: �66�

By integrating Eq. (66), with the boundary conditions
(19) and (56) and the constraint (14), one obtains the

Hagen±Poiseuille velocity pro®le

u� y� � 3
2 �1ÿ y2�: �67�

Eqs. (58) and (67) yield

l � 3: �68�
The substitution of Eq. (67) in Eq. (52) gives

d2y
dy2
� 3

4
�1� R��1ÿ y2�: �69�

The integration of Eq. (69), with the boundary con-
ditions (53) and the constraint (54) yields

y � 3

4
�1� R�

�
ÿ y4

12
� y2

2
� 2

3

1ÿ R

1� R
yÿ 9

60

�
: �70�

If R=ÿ1, Eq. (55) reduces again to Eq. (66). By inte-
grating Eq. (66), with the boundary conditions (19)
and (56) and the constraint (14), one obtains the vel-
ocity pro®le

u� y� � Gr

384Re
y�1ÿ y2� � 3

2
�1ÿ y2�: �71�

Note that, in the case e=0, Eq. (22) reduces to Eq.
(71).

Eqs. (58) and (71) yield Eq. (68), while Eq. (52)
reduces to Eq. (15). The integration of Eq. (15), with
the boundary conditions (53) and the constraint (54),

yields Eq. (17). Indeed, for R=ÿ1 the boundary con-
dition q1t q2 coincides with the boundary conditions
T1t q2 and T1tT2.

Let us now discuss the implications of Eqs. (62)±
(64). The unlikely previsions of Eqs. (62) and (64) for
o3o0 and R31 are illustrated in Fig. 4, which rep-
resents plots of u and y vs. y for (1+R )Gr/

Re=ÿ4004.51121392346 and R=0.998, 0.999, 1.001,
1.002. The ®gure shows that, although the boundary
conditions are very close to symmetry, the plots of u

and y seem perfectly antisymmetric. Positive values of
u and negative values of y are predicted for y<0 if R
< 1, and for y>0 if R>1. The absolute values of u

and y exceed, respectively, 6 � 1012 and 2 � 1012 for
both R=0.998 and 1.002; they exceed, respectively,
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3 � 1012 and 1 � 1012 for both R=0.999 and 1.001.

Obviously, the predictions plotted in Fig. 4 cannot cor-

respond to physical reality. Indeed, this ®gure illus-

trates, by examples, the following circumstance. For

every value of R such that Eqs. (62)±(64) hold, except

if R is exactly equal to 1, the predictions of these

equations are quite unlikely for Gr/Re=ÿ128o 4
0/

(1+R ). This circumstance suggests that the laminar

¯uid ¯ows considered in this section can be attained

experimentally only if vGr/Rev<128o 4
0/(1+R ). In par-

ticular, for R=1 this condition implies vGr/Rev <

2002.26.

In recent theoretical works on the stability of mixed-

convection ¯ow in vertical channels, Chen and Chung

[8,9] ®nd more restrictive stability conditions. For sym-

metrically heated channels [8], they conclude that, for

Pr=7 and vRev>40, buoyancy assisted ¯ow (i.e., for

instance, upward ¯ow with q2=q1>0) can become un-

stable if Gr/Re>1054 and buoyancy opposed ¯ow can

become unstable if Gr/Re<ÿ390. On the other hand,

for asymmetrically heated channels (R=ÿ1), the ¯ow

stability is strongly dependent on Re and Pr [9].

Clearly, no upper limit on vGr/Rev can be established in

this case if Re is not ®xed, because, if R=ÿ1, no net

heat ¯ux is supplied to the ¯uid and natural convection

(Re=0) can occur. The available experimental studies

on the stability of mixed-convection ¯ow do not refer

to vertical channels, but to vertical pipes [10]. The

authors [10] conclude that, for uniformly heated pipes,

buoyancy assisted ¯ow becomes unstable when the vel-

ocity pro®les develop points of in¯ection. For a sym-

metrically heated vertical channel, the velocity pro®les

develop points of in¯ection for Gr/Ree 1558.55. To

the authors' knowledge, neither theoretical nor exper-

imental works provide stability criteria for the mixed-

convection ¯ow in a vertical channel with vRv$1.

In the following, we will consider q2>0 and ÿ1ER

E1. We will assume the conditions Gr/ReE1000 for

upward ¯ow and Gr/Reeÿ350 for downward ¯ow.

Fig. 5 illustrates the dependence of the dimension-

less-velocity pro®les on the value of R, for upward

Fig. 5. Boundary condition q1t q2: plots of u vs. y for Gr/

Re=1000 and some values of R. The thick solid line (a) refers

to R=1, the thin solid line to R=0.5, the line with long

dashes to R=0, the line with short dashes to R=ÿ0.5, the

thick solid line (b) to R=ÿ1.

Fig. 6. Boundary condition q1t q2: plots of u vs. y for Gr/

Re=ÿ350 and some values of R. The thick solid line (a)

refers to R=1, the thin solid line to R=0.5, the line with long

dashes to R=0, the line with short dashes to R=ÿ0.5, the

thick solid line (b) to R=ÿ1.

Fig. 4. Boundary condition q1t q2: plots of u and y vs. y for

(1+R )Gr/Re=ÿ4004.51121392346 and values of R close to

R=1. The thick solid lines refer to R=0.998, the lines with

long dashes to R=0.999, the lines with short dashes to

R=1.001, the thin solid lines to R=1.002.

A. Barletta, E. Zanchini / Int. J. Heat Mass Transfer 42 (1999) 3169±31813178



¯ow. The ®gure shows that, for Gr/Re=1000, the plots

of u vs. y undergo sharp changes while R varies in the

range ÿ1ERE1. The thick solid line denoted by (a),

which represents the condition R=1, displays a vel-

ocity pro®le similar to that of forced convection, but

with u(0)31.335. No in¯ection of the velocity pro®le is

present. On the other hand, the thick solid line

denoted by (b), which represents the condition R=ÿ1,
shows an appreciable ¯ow reversal close to the cooled

wall. The plots for R=0.5 (thin solid line), R=0 (line

with long dashes), and R=ÿ0.5 (line with short

dashes) lie between the lines denoted by (a) and (b);

clearly, the plot for R=0.5 is closer to line (a), while

that for R=ÿ0.5 is closer to line (b). A hardly appreci-

able ¯ow reversal occurs for R=ÿ0.5. The dependence

of u( y ) on R for downward ¯ow is illustrated in Fig.

6, which refers to Gr/Re=ÿ350 with the same values

of R as Fig. 5. The in¯uence of R on the velocity pro-

®les is still appreciable, even if the absolute value of

Gr/Re is rather small. Clearly, for R$ 1, the highest

values of u occur for y< 0, i.e. in the neighbourhood

of the cooled wall.

The plots of the dimensionless temperature pro®les

corresponding to the plots of u( y ) represented in Figs.

5 and 6 have not been reported, because the depen-

dence of y( y ) on Gr/Re is hardly appreciable in

graphic form. Plots of y( y ) for Gr/Re=0 (forced con-

vection) and some values of R are reported in Fig. 7.

As expected, the plots for R=0.5 (thin solid line),

R=0 (line with long dashes), and R=ÿ0.5 (line with

short dashes) lie between the solid lines denoted by (a)

and (b), which refer to R=1 and to R=ÿ1, respect-
ively.

Plots of l vs. Gr/Re, in the range ÿ350EGr/ReE
1000, are reported in Fig. 8 for R=1 [line (a)], R=0.5,

0, ÿ0.5 and ÿ1 [line (b)]. The ®gure shows that, while

for R=ÿ1 the parameter l is constant, for R>ÿ1 it is
an increasing function of Gr/Re. Thus, if R>ÿ1 and

the value of mUm/L
2 is ®xed, the absolute value of dP/

dX is higher for buoyancy-assisted ¯ow than for buoy-
ancy-opposed ¯ow. This e�ect is due merely to the

change of shape of the velocity pro®le. In fact, the
choice of Tm(X ) as the reference ¯uid temperature
implies that the average value of the buoyancy force in

each channel section is zero. As a consequence, strictly
speaking, the buoyancy neither assists nor opposes the
net ¯uid ¯ow. In this paper, the terms buoyancy-

assisted ¯ow and buoyancy-opposed ¯ow are used only
to denote the cases Gr/Re>0 and Gr/Re<0.
The Nusselt numbers at the channel walls will be

de®ned as

Nu1 � 4Lq1
k�T1 ÿ Tb� , Nu2 � 4Lq2

k�T2 ÿ Tb� �72�

where Nu1 refers to the wall at Y=ÿL, Nu2 refers to
the wall at Y=L, and

Tb � 1

2LUm

�L
ÿL

UT dY �73�

is the bulk temperature of the ¯uid in the cross section

considered. By employing Eqs. (10) and (50), Eq. (72)
can be rewritten as

Nu1 � 4R

y1 ÿ yb

, Nu2 � 4

y2 ÿ yb

�74�

where the dimensionless bulk temperature yb is given
by

Fig. 7. Boundary condition q1t q2: plots of y vs. y for Gr/

Re=0 and some values of R. The thick solid line (a) refers to

R=1, the thin solid line to R=0.5, the line with long dashes

to R=0, the line with short dashes to R=ÿ0.5, the thick

solid line (b) to R=ÿ1.

Fig. 8. Boundary condition q1t q2: plots of l vs. Gr/Re for

some values of R. The thick solid line (a) refers to R=1, the

thin solid line to R=0.5, the line with long dashes to R=0,

the line with short dashes to R=ÿ0.5, the thick solid line (b)

to R=ÿ1.
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yb � 1

2

�1
ÿ1

uy dy: �75�

The Nusselt numbers de®ned above can be employed
to evaluate T1ÿTb, T2ÿTb and T1ÿT2, if q1 and q2 are

given. In particular, y1ÿy2=4(R/Nu1ÿ1/Nu2). Values
of Nu1 and of Nu2 in the range ÿ300EGr/ReE1000
are reported in Table 1, for R=1, 0.5, 0, ÿ0.5 and ÿ1.
For positive values of R and of Gr/Re, it is possible to
verify that the values of Nu1 and of Nu2 reported in
Table 1 agree with those evaluated by Cheng et al. [3].
To perform this check, one must consider that the

ratio between the Grashof number and the Reynolds
number de®ned in this paper is eight times that de®ned
in Ref. [3], while the Nusselt numbers de®ned in this

paper are twice those de®ned in Ref. [3].
The results reported in Table 1 show that Nu1 is an

increasing function of Gr/Re for R=1, vanishes for

R=0, and is a decreasing function of Gr/Re for the
other values of R. On the other hand, Nu2 is an
increasing function of Gr/Re for each value of R and,

obviously, equals Nu1 for R=1.

5. Conclusions

The fully-developed mixed-convection in a plane ver-
tical channel has been studied analytically. For the

boundary conditions of either uniform wall tempera-
tures or a uniform wall temperature and a uniform
wall heat ¯ux, it has been shown that the choice of the

reference ¯uid temperature has a non-negligible e�ect
on the dimensionless velocity pro®les and a very sharp
e�ect on the gradient of the di�erence P between the

pressure and the hydrostatic pressure. In particular,
only if the mean ¯uid temperature Tm is chosen as the
reference temperature, P always decreases along the

¯ow direction. A more general argument in favour of
the choice of the mean ¯uid temperature in a cross sec-
tion Tm as the reference ¯uid temperature for any

fully-developed mixed-convection problem in channels
has been proposed. For the boundary condition of uni-
form wall heat ¯uxes q1 and q2, it has been proved

that any choice of a ®xed reference temperature yields
an unlikely pressure ®eld. Therefore, the mean ¯uid
temperature in each cross section, Tm(X ), has been
chosen as a local reference temperature. With this

choice, an analytical solution of the fully-developed
mixed-convection in a vertical channel with the bound-
ary condition of uniform wall heat ¯uxes has been pre-

sented. The solution holds also for negative values of
q1/q2. In particular, for q1/q2=ÿ1 it coincides with the
solution obtained for the boundary conditions of uni-

form wall temperatures and of a uniform wall tempera-
ture and a uniform wall heat ¯ux.
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